GEMS ARTS AND SCIENCE COLLEGE, RAMAPURAM POST GRADUATE DEPARTMENT OF MICROBIOLOGY

PROGRAMME OUTCOMES (POs), PROGRAMME SPECIFIC OUTCOMES (PSOs), and COURSE OUTCOMES (COs)

PROGRAMME: MSc. MICROBIOLOGY

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1. Gain in-depth understanding of various aspects of microbiology pertaining to medical, agricultural, environmental and industrial applications.

PSO2. Familiarized with latest and advanced research tools and techniques pertaining to biology.

PSO3. Analysis of scientific issues across the spectrum of related disciplines.

PSO4. Acquire skills specific to microbiology and allied fields for converting information to knowledge through hypothesis, design, execution and analysis.

PSO5. Design experiments to prove scientific process and to synthesize product/ services for the benefit of community.

PSO6. Ability to retrieve biological information through data mining and data handling.

PSO7. Ability to present their work through written, oral, and visual presentations, including an original research proposal.

PSO8. Enable the students to improve the quality of human lives in relation to environment with the knowledge in microbiology.

PSO9. Capacity to work as a member of team upholding the essence of collaboration, cooperation, ethics and integrity.

PSO10. Ability to upgrade knowledge independently and act upon means of improvement for lifelong learning.

COURSE OUTCOMES (COs)

SEMESTER I

COURSE	PAPER NAME	CRE	COURSE OUTCOME
CODE		DITS	
MBG1C01	GENERAL BIOCHEMISTRY AND MICROBIAL METABOLISM	4	 CO1-Summarise the fundamental biochemical properties of biomolecules CO2 -Describe the metabolism of Amino acids, Carbohydrates, Lipids and Nucleic acids CO2-Describe the metabolism of Amino acids, Carbohydrates, Lipids and Nucleic acids CO2 -Describe the metabolism of Amino acids, Carbohydrates, Lipids and Nucleic acids CO2 -Describe the metabolism of Amino acids, Carbohydrates, Lipids and Nucleic acids
MBG1C02	BIOPHYSICS AND INSTRUMENTATION	3	 CO1-Discuss the properties of interactions between atoms and molecules. CO2-Demonstrate the interactions of DNA-protein, RNA-protein and DNA-drug CO3-Analyse the structure of protein through Ramachandran plot and advanced techniques CO4-Compare different techniques in microscopy CO5-Differentiate the working principle, instrumentation and applications of various bio-analytical instruments.
MBG1C03	ENVIRONMENTAL AND SANITATION MICROBIOLOGY	3	 CO1- Discuss the basic concepts of ecological system, pollution and environment CO2- Compare different types of interaction among microbial communities and their significance CO3 -Explain biogeochemical cycles and their importance in an ecosystem CO4 -Elaborate the role of microbes in soil, water and air

			 CO5- Summarise the methods of air quantitation, air sanitation, sewage treatment and water purification. CO6- Discuss the various aspects and the application of microbes in various fields of agriculture and environmental microbiology like bioremediation, biofertilizers and waste treatment methods.
MBG1C04	AGRICULTURAL MICROBIOLOGY AND PLANT PATHOLOGY	2	 CO1-Describe the microbial interactions between microorganisms, plants and animals CO2-Explain the various applications of microorganisms in agriculture to improve soil fertility as bio fertilizers and bio pesticides. CO3-Contrast between bio fertilizer and chemical fertilizer. CO4 -Illustrate different plant diseases caused by different microorganisms with emphasis to pathology and epidemiology. CO5 -Discuss the defence mechanisms exerted by the plant in response to an infection
MBG1L01	PRACTICAL I	4	 CO1 -Apply the knowledge in the preparation of solutions and buffers according to the neediness using molar, percentage etc. CO2-Analyse the Qualitative and Quantitative aspects of different bio active components Proteins, carbohydrates, citric acids etc. CO2-Analyse the Qualitative and Quantitative aspects of different bio active components Proteins, carbohydrates, citric acids etc. CO4-Perform isolation, Quantification, purification and separation of bioactive components using chromatographic techniques. CO5-Demonstrate various experiments which

			include basic methods of physical biochemistry, biochemical analysis and separation methods
MBG1L02 PRACTICAL I 4	PRACTICAL I		CO1- Isolate bacteria, fungi, actinomycetes and phages from various sources of concern
			CO2- Demonstrate various growth patterns, culturing methods and different quantification techniques of microorganisms from air, soil and termite gut
			CO3- Demonstrate the Anaerobic cultivation of bacteria
		CO4- Evaluate the efficacy of autoclave and bacteria proof filters	
		4	CO5- Demonstration of special microorganisms with different unique applications in agriculture and environmental research
			CO6 -Assess the quality of water by MPN, DO, BOD and COD.
		CO7- Compare efficacy of different bio control agents.	
		CO8- Assessment of the synthesis of extracellular enzymes by microbes	
			CO9-Illustrate the role of microorganisms in
			bioremediation

SEMESTER II

COURSE	PAPER NAME	CRE	COURSE OUTCOME
CODE		DITS	
MBG2C05	PRINCIPLES OF GENETICS	4	 CO1-Recall the basic concepts of Classical genetics, History of Mandel experiments on pea plants and the laws and importance of Mendelian genetics. CO2-Explain the mechanism of sex linkage, crossing over and genetic mapping CO3-Summarize the importance and significance of Chromosomal aberrations CO4- Analyse the importance of Pedigree analysis and its usage in genetic disease analysis. CO5-Discuss the basic concepts of bacterial genetics and mode of gene transfer mechanism in bacteria. CO6-Justify and correlate the importance of
MBG2C06	FOOD AND DAIRY MICROBIOLOGY	4	 CO6-Justify and correlate the importance of the molecular events in gene expression and in gene regulation CO1-Classify the type of Microorganisms present in food able to cause contamination and what are the factors influence growths of microbes in foods CO2-Explain standards for assessing the quality of milk CO3-Summarize spoilage of food, factors causing food spoilage and food preservation methods CO4-Elaborate different food borne infections CO5-Explain about food hygiene and regulatory practices CO6-Discuss the importance of microorganisms in foods

			CO1 -Describe the methods for screening.
			isolation, strain improvement.
			upstream processing and down stream
			processing in industrial process
		4	CO2- Apply different isolation and
			development methods for industrially
			important microorganisms
	INDUSTRIAL		CO3-Explain the mass transfer mechanism in
	MICROBIOLOGY		fermentation
MBG2C07			CO4-Compare different types of
			fermentations
			CO5-Explain the effects of different
			components in fermentation media.
			CO6-Discuss various techniques used for the
			recovery of fermentation
			products
			CO1-Describe the cells, organs, molecules,
	IMMUNOLOGY	4	mediators, receptors associated with
			immune responses
			CO2-Illustrate the development of different
			immune responses in a host
			CO3 -Classify the immunoglobulins with a
MBG2C08			detailed understanding of their diversity
			CO4 Explain the machanisms of Hybridoma
			technology antigen antibody
			reactions and Complement system
			CO5 -Categorize different immune associated
			disease conditions like hypersensitivity,
			autoimmunity, graft rejection and tumor
			development based
			on mechanism.
			CO1 -Enumerate the milk microflora and
	PRACTICAL III		Apply the methods used in Testing the
		4	quality of link.
MB2L03			CO2-Demonstrate preservation of food angilage
			CO4 Isolation of any machine
			wiene enconieme
			microorganisms

CO5-Demonstrate the Growth curve of
bacteria
CO6 -Demonstrate the detection of industrially important microorganisms and its metabolite production
CO7 -Demonstrate the production of
Mushroom production

SEMESTER III

COURSE CODE	PAPER NAME	CRE DITS	COURSE OUTCOME
MBG3C09	MEDICAL MICROBIOLOGY	4	 CO1-Describe the morphology, pathogenicity, epidemiology, laboratory diagnosis and treatment of important human bacterial pathogens. CO2-Explain the pathogenesis, laboratory diagnosis and prophylaxis of important viral pathogens CO3-Illustrate the characteristics of fungi with focus to superficial, sub cutaneous, deep and opportunistic infections CO4-Describe the general features and classification of protozoa CO5-Demonstrate the morphology, life cycle, pathogenesis and epidemiology of important protozoan diseases CO6-Describe the mechanism of action and activity spectrum of antibiotics CO7-Discuss the antifungal and antiviral drugs and determination of MIC
MBG3C10	MOLECULAR	4	CO1 -Explain the mechanisms behind the information flow from DNA to

	BIOLOGY		proteins and the multiple levels at which gene expression can be regulated
			CO2 -Compare gene expression and regulation in prokaryotes and eukaryotes
			CO3 -Discuss the molecular mechanisms underlying mutations, DNA damage and repair
			CO4 -Acquaint knowledge of DNA replication and other mechanisms of gene transfer mechanisms
			CO5 -Discuss the concept of Oncogenes and tumour suppressor genes
MBG3E01	DIAGNOSTIC MICROBIOLOGY	4	 CO1-Describe a wide range of diagnostic technologies and methodologies relevant to the fields of clinical biochemistry, haematology, histopathology, cytopathology, molecular biology and microbiology CO2-Differentiate between various Probe-Based Microbial Detection and Identification CO3-Compare various molecular diagnostic tools CO4-Explain the application of molecular
			tools in systematics CO1 -Explain the structure and functions of
MBG3E02	CELL BIOLOGY	4	cell components in eukaryotic cells CO2 -To distinguish the mechanism of protein sorting and transportation to various targets CO3 -Describe the mechanisms of cell signaling, cell death and cancer development. CO4 -Correlate the cell communication mechanism with the cell cycle and its regulation CO5 -Conceptualize the theories and molecular mechanism of cancer development
	MICROBIAL		CO1- Compare the classification systems with contributions of pioneers in

	TAXONOMY		taxonomy
		4	CO2- Distinguish different criteria used in characterization and classification
			CO3- Analyse the Molecular techniques used in classification
MBG3E03			CO4- Discuss the Bergey's Mannual of Systematic Bacteriology with emphasis to different groups.
			CO5- Demonstrate the knowledge of taxonomy of microorganisms and their importance in clinical microbiology, public health and to prevent growth and spread of microbes in the environment
			CO1 -Perform the acid fast staining procedure
MBG3L04	PRACTICAL IV	4	CO2 -Demonstrate skills in isolation and identification of various pathogenic microorganisms
			CO3 -Discuss the viral inoculation routes in embryonated eggs
			CO4 -Perform immunological tests for diagnosis of antigen/antibody
			CO5 -Determine the MIC of an antimicrobial compound
	PRACTICAL V	4	CO1 -Demonstrate the stages of mitosis and meiosis
			CO2 -Isolate, purify and estimate DNA, RNA and plasmid from bacteria
MBG3L05			CO3 -Demonstrate the visualization of the isolated nucleic acid by electrophoresis
			CO4 -Demonstrate the concept of hyperchromism
			CO5- Evaluate the gene transfer process in bacteria by performing conjugation and transformation
			CO6 -Assess the gene transfer by induction of beta gal gene in E coli Demonstrate cloning and restriction digestion

SEMESTER IV

COURSE	PAPER NAME	CRE	COURSE OUTCOME
CODE		DITS	
MBG4C11	BIOSTATISTICS AND BIOINFORMATICS	4	 CO1-Discuss the principles and practices of statistical methods in biological research. CO2-Explain various biological data bases for sequence retrieval, analysis, sequence alignments, phylogeny and other applications CO3-Discuss the method of molecular docking and their application CO4-Discuss the concept behind drug designing with the application of bioinformatics tools
MBG4E04	MICROBIAL BIOTECHNOLOGY	4	 CO1-Identify the issues related to plant nutrition, quality improvement, environment adaptation, transgenic crops and their use in agriculture CO2-Discuss the environmental impact of genetic engineering related to GM food crops and other agro, diary based products CO3-Explain the importance of microbes in oil recovery and degradation, leaching, biomining and also production of biopolymers, bio-surfactants, antibiotics enzymes etc CO4-Describe about genetic engineering for recombinant protein expression and production from various cell systems which has advanced knowledge about factorial experimental set up.
MBG4E05	GENETIC ENGINEERING	4	 CO1-Discuss the fundamental molecular tools and their applications in DNA modification, manipulation and cloning CO2-Compare genomic and cDNA Library CO3-Describe advanced molecular techniques in genetic engineering-PCR Methods, sequencing methods, RFLP, RAPD etc CO4-Interpret the importance of molecular

			marker genes in cloning
			CO5-Explain the techniques for DNA
			introduction to the vectors and host cells
			CO1-Discuss the significance of biosafety
			and bioethics related regulations
			CO2-Appreciate the importance of
			Intellectual property rights and explain
			various types of IPR
MRC4F06	BIOSAFETY,	4	CO3 -Recognize importance of biosafety
NIDG4L00	BIOETHICS & IPR	•	practices and guidelines in research
			CO4 -Comprehend benefits of GM technology
			and related issues
			CO5-Recognize importance of protection of
		4	new knowledge and innovations and
			its role in business
	PRACTICAL VI		CO1 -Demonstrate proficiency in
			the major public sequence databases use of
			the different computational tools to find
			sequences, analysis of protein and nucleic
			acid sequences by various software packages
			CO2 - Retrieve data from Biological
			Databases
MBG4L00			CO3 -Explain the features of National Centre for Piotochaplacy Information (NICPI)
			CO4 -Preform sequence comparison using
			various alignment tools
			CO5 -Create protein structures with modelling
			tools.
			CO6-Prediction of Gene structure, gene
			function and ORF position.