UNIVERSITY OF CALICUT #### **Abstract** General & Academic - CBCSS PG Regulations 2019 - Scheme and Syllabus of M.Sc Microbiology programme w.e.f 2020 Admission onwards -Incorporating Outcome Based Education - Implemented - Subject to ratification of Academic Council - Orders Issued. G & A - IV - J U.O.No. 5710/2021/Admn Dated, Calicut University.P.O, 29.05.2021 Read:-1) U.O. No. 8861/2019/Admn, Dated 05.07.2019. - 2) U.O. No.15614/2019/Admn, Dated 05.11.2019. - 3) The email from the Chairperson, Board of Studies, Dated 25.05.2021. - 4) Remarks of the Dean, Faculty of Science, Dated 26.05.2021. - 5) Orders of the Vice Chancellor in the file of even no, Dated 28.05.2021. #### **ORDER** - 1. The scheme and syllabus of M.Sc Microbiology Programme under CBCSS PG Regulations 2019 in the affiliated Colleges of the University, w.e.f 2019 admission onwards has been implemented, vide paper read (1) above and same has been modified, vide paper read (2) above. - 2. The Chairman, Board of Studies in Microbiology, vide paper read (3) above, has forwarded the Scheme and Syllabus of M.Sc Microbiology Programme, incorporating Outcome Based Education(OBE) in the existing syllabus in accordance with CBCSS PG Regulations 2019, for affilated colleges of the University w.e.f 2020 admission after circulating among the members of the board, as per Chapter 3(34) of Calicut University First Statute, 1976. - 3. The scheme and syllabus of M.Sc Microbiology Programme, incorporating Outcome Based Education(OBE), has been approved by the Dean, Faculty of Science, vide paper read (4) above and by the Vice Chancellor, subject to ratification by the Academic Council, vide paper read (5) above. - 4. The Scheme and syllabus of M.Sc Microbiology programme (CBCSS) incorporating Outcome Based Education (OBE) in the existing syllabus, in tune with CBCSS PG Regulations 2019, is therefore implemented with effect from 2020 Admission onwards under affiliated colleges of the University, subject to ratification by the Academic Council. - 5. Orders are issued accordingly. - 6. U.O. No.15614/2019/Admn dated, 05.11.2019 stands modified to this extent.(Modified syllabus appended) Arsad M Assistant Registrar To The Principals of all Affiliated Colleges Copy to: PS to VC/PA to PVC/ PA to Registrar/PA to CE/JCE I/JCE V/DoA/EX and EG Sections/GA I F/CHMK Library/Information Centres/SF/DF/FC Forwarded / By Order Section Officer #### UNIVERSITY OF CALICUT # M.Sc. Microbiology (CBCSS) Syllabus For affiliated colleges 2020 Admission onwards Detailed Scheme for the M. Sc. Microbiology (CBCSS) course 2020 | | | | 700 | | | | | |----------------|--------------------|--|-------------|--------|------------------------------|-----------|------| | | | Course | Contact | Credit | Exam Duration | Weightage | tage | | | | | Hours/Week | | | Ext | Int | | I | 1. | MBGIC01. General Biochemistry and Microbial Metabolism | 4 | 4 | 3 Hours | 4 | 1 | | ter | 2. | MBGIC02. Biophysics and Instrumentation | 3 | 3 | 3 Hours | 4 | 1 | | sət | 3. | MBGIC03. Environmental and Sanitation Microbiology | 3 | 3 | 3 Hours | 4 | 1 | | иəş | 4 | MBGIC04. Agricultural Microbiology and Plant Pathology | 3 | 2 | 3 Hours | 4 | 1 | | S | 5. | MBGIL01. Practical I | 9 | 4 | 1 day x 5 Hours | 4 | 1 | | | 9. | MBGLL02. Practical II | 9 | 4 | 2 days x 5 hours | 4 | 1 | | | | Total | 25 | 20 | | | | | IJ | 7. | MBG2C05. Principles of Genetics | 5 | 4 | 3 Hours | 4 | 1 | | er] | 8. | MBG2C06. Food and Dairy Microbiology | 5 | 4 | 3 Hours | 4 | 1 | | 189 | 9. | MBG2C07. Industrial Microbiology | 4 | 4 | 3 Hours | 4 | 1 | | шә | 10. | MBG2C08. Immunology | 5 | 4 | 3 Hours | 4 | 1 | | S | 11. | MBG2L03. Practical III | 9 | 4 | 2 days x 5 hours | 4 | 1 | | | | Total | 25 | 20 | | | | | IJ | 12. | MBG3C09. Medical Microbiology | 5 | 4 | 3 Hours | 4 | 1 | | ΙJ | 13. | MBG3C10. Molecular biology | 4 | 4 | 3 Hours | 4 | 1 | | əşs | 14. | MBG3E01. Diagnostic microbiology | | | | 4 | 1 | | эш | 15. | MBG3E02. Cell Biology | 4 | 4 | 3 Hours | | 1 | | es. | 16. | MBG3E03. Microbial Taxonomy | | | | | 1 | | | 17. | MBG3L04 Practical IV | 9 | 4 | $2 \text{ days x 5 hours}^1$ | 4 | 1 | | | 18. | MBG3L05. Practical V | 9 | 4 | $2 \text{ days x 5 hours}^2$ | 4 | 1 | | | | Total | 25 | 20 | | | | | Λ | 19. | MBG4C11. Biostatistics and Bioinformatics | 4 | 4 | 3 Hours | 4 | 1 | | I 1 | 20. | MBG4E04. Microbial Biotechnology | | | | 4 | 1 | | əşsə | 21 | | 4 | 4 | 3 Hours | | | | ша | 22 | MBG4E06. Biosafety, Bioethics and IPR | | | | | I | | PS | 23 | MBG4L06. Practical VI | 9 | 4 | 1 day x 5 Hours | 4 | 1 | | | 24 | MBG4P. Dissertation | 11 | 8 | 1 day x 5 Hours | 4 | 1 | | | | Total | 25 | 20 | | | | | | | Grand Total | | 80 | | | | | Audit
Audit | t Course
Course | Audit Course I: Ability Enhancement Course (AEC) Audit Course II (PCC): Professional Competency Course (PCC) | No workload | 4 4 | | | | | | | | | | | | 1 | #### WEIGHTAGE DISTRIBUTION OF EXAMINATIONS AND PROJECT WORK #### **Theory examination (Internal)** | | Percentage | Weightage | |----------------------|------------|-----------| | Test paper | 40 | 2 | | Seminar/Presentation | 20 | 1 | | Assignment | 20 | 1 | | Attendance | 20 | 1 | #### **Practical examination (Internal)** | | Percentage | Weightage | |----------------|------------|-----------| | Lab skill | 40 | 4 | | Record/Viva | 30 | 3 | | Practical Test | 30 | 3 | #### **Practical examination (External)** | | | Percentage | Weightage | |------------|---------------------|------------|-----------| | Experiment | Principle/Procedure | 10 | 1 | | | Major Experiment | 20 | 2 | | | Minor Experiment | 30 | 3 | | | Spotters | 10 | 1 | | Record | | 10 | 1 | | Viva | | 20 | 2 | #### Dissertation | SI
. No | Criteria | % of weightage | Weightage
External | Weightage
Internal | |------------|---|----------------|-----------------------|-----------------------| | 1 | Relevance of the topic and Statement of problem | 600/ | 8 | 2 | | 2 | Methodology & Analysis | 60% | 8 | 2 | | 3 | Quality of Report & Presentation | | 8 | 2 | | 4 | Viva-voce | -40% | 16 | 4 | | | Total Weightage | 100% | 40 | 10 | #### **Question paper** | | Number of questions | Weightage | Total | |--------------|---------------------|-----------|-----------| | Short Answer | 4 out of 6 | 2 | 8 | | Short essays | 4 out of 6 | 3 | 12 | | Essays | 2 out of 4 | 5 | 10 | | | | 1 | Total: 30 | #### PROGRAMME SPECIFIC OUTCOME - PSO1. Gain in-depth understanding of various aspects of microbiology pertaining to medical, agricultural, environmental and industrial applications. - PSO2. Familiarized with latest and advanced research tools and techniques pertaining to biology. - PSO3. Analysis of scientific issues across the spectrum of related disciplines. - PSO4. Acquire skills specific to microbiology and allied fields for converting information to knowledge through hypothesis, design, execution and analysis. - PSO5. Design experiments to prove scientific process and to synthesize product/ services for the benefit of community. - PSO6. Ability to retrieve biological information through data mining and data handling. - PSO7. Ability to present their work through written, oral, and visual presentations, including an original research proposal. - PSO8. Enable the students to improve the quality of human lives in relation to environment with the knowledge in microbiology. - PSO9. Capacity to work as a member of team upholding the essence of collaboration, cooperation, ethics and integrity. - PSO10. Ability to upgrade knowledge independently and act upon means of improvement for lifelong learning. #### **COURSES** #### Semester I - 1. MBG1C01. General Biochemistry and Microbial Metabolism - 2. MBG1C02. Biophysics and Instrumentation - 3. MBG1C03. Environmental and Sanitation Microbiology - 4. MBG1C04. Agricultural Microbiology and Plant Pathology - 5. MBG1L01. Practical I - 6. MBG1L02. Practical II #### **Semester II** - 7. MBG2C05. Principles of Genetics - 8. MBG2C06. Food and Dairy Microbiology - 9. MBG2C07. Industrial Microbiology - 10. MBG2C08. Immunology - 11. MBG2L03. Practical III #### **Semester III** - 12. MBG3C09. Medical Microbiology - 13. MBG3C10. Molecular biology - 14. MBG3E01. Diagnostic microbiology - 15. MBG3E02. Cell Biology - 16. MBG3E03. Microbial Taxonomy - 17. MBG3L04 Practical IV - 18. MBG3L05. Practical V #### **Semester IV** - 19. MBG4C11. Biostatistics and Bioinformatics - 20. MBG4E04. Microbial Biotechnology - 21. MBG4E05. Genetic engineering - 22. MBG4E06. Biosafety, Bioethics and IPR - 23. MBG4L06. Practical VI - 24. MBG4Pr. Dissertation #### **SEMESTER I** #### MBG1C01. General Biochemistry and Microbial Metabolism #### **Course objectives:** - Explain the structure and functions of major biological macro and micro molecules. - To provide an understanding of the synthesis of proteins, lipids, amino acids and carbohydrates and their role in metabolic pathways. - To know about the regulation of metabolic pathways at the epigenetic, transcriptional, translational levels including RNA and protein folding, modification and degradation. - **CO1** Summarise the fundamental biochemical properties of biomolecules - CO₂ Describe the metabolism of Amino acids, Carbohydrates, Lipids and Nucleic acids - CO₃ Demonstrate the mechanism of ATP synthesis at various levels by biological process. - **CO4** Interpret the properties, classification and mechanism of action of Enzymes associated with the metabolism of biomolecules - Unit 1. Structure and functions of Biomolecules: Structure, classifications and functions of carbohydrates- Monosaccharides; Disaccharides and polysaccharides... Heteropolysaccharides, Glycosaminoglycans and Glycoproteins. Structure and functions of amino acids and proteins: - Chemical structures and classifications of amino acids. Chemical
properties of amino acids; Lipids -structure, properties and classification. Fatty acid classification- Saturated, unsaturated and poly- unsaturated fatty acids (PUFA); Short chain, medium chain and long chain fatty acids. Phospholipids and Sphingolipids; prostaglandins, prostacyclins and leukotriens. Hormones and vitamins -structure and functions. - Unit 2. Carbohydrate metabolism: Respiration and fermentation. Respiration aerobic and anaerobic respiration. Glycolysis- aerobic and anaerobic types; alcoholic fermentation; regulation of glycolysis. Pyruvate dehydrogenase complex; Krebs cycle; Glyoxylate cycle- significance, regulation; Phosphorylation – substrate level and oxidative phosphorylation. Electron transport chain- components and - mechanism of ATP formation; Chemi-osmotic coupling hypothesis. Gluconeogenesis. Glycogenesis and glycogenolysis. Peptidoglycan biosynthesis. - Unit 3. Amino acid metabolism- Transamination, deamination, transmethylation and decarboxylation. Glucogenic and ketogenic amino acids, Microbial metabolism of glycine, phenylalanine and lysine. - Unit 4. Lipid metabolism-Fatty acid oxidation; alpha, beta, and omega oxidations; Fatty acid synthesis; synthesis of unsaturated and long chain fatty acids. - Unit 5. Nucleic acid metabolism Biosynthesis and degradation of purines and pyrimidines- de novo and salvage pathways. - Unit 6. Enzymology- Enzyme–IUB-Nomenclature; Classification; Enzyme active sites; coenzymes and co-factors; Factors affecting enzyme activity, Enzyme kinetics Michaelis- Menton equation Multi-subunit enzymes; isozymes; allosteric enzymes; enzyme regulation; Enzyme inhibition; Mechanism of Enzyme action; Enzyme purification techniques. Enzyme immobilization. #### **MBG 1C02: Biophysics and Instrumentation** **Course objectives:** The learner will develop in-depth understanding on the principles of scientific instrumentation and various analytical techniques used in biological research. - CO1 Discuss the properties of interactions between atoms and molecules. CO2 Demonstrate the interactions of DNA-protein, RNA-protein and DNA-drug. CO3 Analyse the structure of protein through Ramachandran plot and advanced techniques CO4 Compare different techniques in microscopy Differentiate the working principle, instrumentation and applications of various bio-analytical instruments. - Unit 1. Structure of atoms, molecule, Physico-chemical forces- ions, ionic bonds, covalent bonds, Hydrogen bonds, vander Walls forces, hydrophobic interactions, polar and non-polar molecules. Laws of thermodynamics, the concept of enthalpy, entropy and free energy, thermodynamic equilibrium, redox potential, high energy - molecules, examples of redox potential in biological system. DNA-Protein interaction-. Lambda repressor and cro binding to DNA. Interactions of transcription factors-HLH, bHLH, Leucine Zipper, Cys-His, Zinc fingers. Histone-DNA interaction, RNA protein interactions, DNA-drug Interaction. - Unit 2. Structural implication of peptide bond, Ramachandran plot, protein families, alpha domains, beta-domains, alpha- beta domains, Protein-drug interaction. peptide mass finger printing using MALDI-TOF, MASCOT database. - Unit 3. Principle, Instrument Design, methods and Applications of Microscopy: Light, Scanning and Transmission electron, phase contrast, polarization, confocal and interference microscopy, CCD camera, Introduction to Atomic force microscopy. Beer-Lamberts law, Principle, Instrument Design, methods and Applications of UV-Visible spectra, IR spectra, Raman Spectra, Fluorescence spectra, NMR and ESR spectra. Colorimetry, spectrophotometry, Flourimetry, Flame photometry and Spectroscopy. Xray diffraction technique-principle and application. - Unit 4. Principle, Instrument Design, methods and Applications of Chromatography, ion exchange, molecular sieve, affinity chromatography, paper, TLC, GC, HPLC, HPTLC, FPLC, GC-MS, LC-MS. Centrifugation and Ultracentrifugation, Centrifugation Principle and application of various types of centrifugation. Electrophoresis- AGE, PAGE- SDS & Native PAGE, Capillary Electrophoresis, isoelectric focusing, 2D Electrophoresis. - Unit 5. pH meter- principle, types and applications. Dialysis-principle and applications. Principle, methods and Applications of Ultra filtration, Sonication, Lyophilization. Refractometry, Cytometry and Flow cytometry, Introduction to Radioactive isotopes, autoradiography, radiation dosimetry- GM counter, Liquid scintillation counting, safety aspects. Biosensors. #### MBG1C03. Environmental and Sanitation Microbiology Course objectives: Attain knowledge about the various roles of microbes in the ecosystem and also understand the impact created by microorganisms in the field of agricultural development and also in various fields like bioremediation and waste treatment. - CO1 Discuss the basic concepts of ecological system, pollution and environment - CO2 Compare different types of interaction among microbial communities and - their significance - CO3 Explain biogeochemical cycles and their importance in an ecosystem - CO4 Elaborate the role of microbes in soil, water and air - CO5 Summarise the methods of air quantitation, air sanitation, sewage treatment and water purification. - CO6 Discuss the various aspects and the application of microbes in various fields of agriculture and environmental microbiology like bioremediation, biofertilizers and waste treatment methods. - Unit 1. Microbial Ecology: Microbial Communities. Basic concept of ecosystem, Ecological niches, Microbial succession- Primary and secondary succession. Microbial interactions- Neutralism, commensalism, symbiosis, synergism, competition, parasitism, antagonism and predation. Bio-geochemical cycles- C,N, S, P and Fe. - Unit 2. Air microbiology: Air microflora- transient nature of air flora, droplet nuclei and aerosols. Methods of air sampling and types of air samplers impaction on solids, impingement technique in liquid, sedimentation, centrifugation, precipitation and thermal precipitations. Air sanitation- methods and applications. - Unit 3. Water Microbiology: Fresh water and marine microbial populations; potable water and indicator microorganisms, Bacteriological analysis of drinking water and other quantitation techniques; drinking water purification. Waste water- Sources, types, composition and characteristics (DO, BOD, COD). Microbiology of waste water. Sewage treatment. - Unit 4. Pollution and Environment: Biosensors and environmental applications. Pollution- Soil, Air, Water and Marine pollution. Solid waste management land filling and composting. Biogas production. Treatment of petroleum waste and xenobiotic. Biodegradation of recalcitrant. Bioleaching General mechanism, Bioleaching of Copper, Uranium, and Gold. #### MBG1C04. Agricultural Microbiology and Plant Pathology #### Course objectives - Understand various plant microbes interactions especially rhizosphere, phyllosphere and mycorrhizae and their applications especially the biofertilizers, biopesticides and their production techniques. - The learner will be aware of the plant diseases caused by microorganisms and the defense strategies by the plants. - **CO1** Describe the microbial interactions between microorganisms, plants and animals - CO₂ Explain the various applications of microorganisms in agriculture to improve soil fertility as bio fertilizers and bio pesticides. - CO₃ Contrast between bio fertilizer and chemical fertilizer. - **CO4** Illustrate different plant diseases caused by different microorganisms with emphasis to pathology and epidemiology. - **CO5** Discuss the defence mechanisms exerted by the plant in response to an infection - Microbial interactions: Microbial flora of soil. Plant Microbe interactions -Unit 1. Nitrogen fixation- Symbiotic and non-symbiotic, physiology and genetics of nitrogen fixation. Mycorrhizae, Rhizosphere and Phylloplane microorganisms. Animal-Microbe Interactions - Rumen microflora, Nematophagous fungi, Bioluminescent bacteria, Termite nutrition - Applications of microbes in agriculture: Biofertilizers. Symbiotic nitrogen Unit 2. fixation - (Rhizobium, Frankia). Symbiotic nutrient mobilizers - Endomycorrhizae and Ectomycorrizae. Non symbiotic microbes – Azotobacter. Associative Symbiosis - Azospirillum. Cyanobacteria (Nostoc, Gloeocapsa), Azolla-Anabaena System. Mass production of biofertilizers. Bio pesticides- bacterial, fungal and viral. Advantages and disadvantages of bio pesticides over the chemical counter parts. GM crops and its significance. - Plant pathology: Components of disease (disease pyramid). Symptoms, Unit 3. epidemiology and control of common plant diseases. Fungal diseases- Late blight of potato, Downy mildew of grapes, Powdery mildew of cucurbits, Early blight of potato, Rice blast, Red rot of sugarcane, Sheath blight of rice, Rusts of wheat. Bacterial diseases - Crown gall disease and Ti plasmid, BLB of rice, Red Raige of of 44 sugarcane, Bacterial wilt of Banana (Moko disease), Soft rot of potato, Citrus canker, Ratoon stunting of sugarcane. Unit 4. Mycoplasma – Coconut root wilt. Viral diseases – Tobacco mosaic, Yellow vein mosaic of Bhindi, Rice Tungro, Leaf curl of papaya, Bunchy top of banana, Potato spindle tuber, Coconut Cadang- Cadang. Nematode- Potato cyst nematode. Plant defense mechanisms- Structural, biochemical, SAR and ISR. ### MBG1L01. Practical I (General Biochemistry and Microbial Metabolism) **Course objectives:** Will gain a proficiency in basic laboratory techniques in biochemistry and be able to apply the scientific method to the processes of experimentation and hypothesis testing - CO1 Apply the knowledge in the preparation of solutions and buffers according to the neediness using molar, percentage etc. - CO2 Analyse the Qualitative and Quantitative aspects of different bio active components Proteins, carbohydrates, citric acids etc. - CO3 Demonstrate Enzyme kinetics and its assay using spectrophotometer -
CO4 Perform isolation, Quantification, purification and separation of bioactive components using chromatographic techniques. - CO5 Demonstrate various experiments which include basic methods of physical biochemistry, biochemical analysis and separation methods. - 1. Preparation of solutions Percentage, Molar, Normal and dilution of stock solutions - 2. Preparation of buffers. - 3. Estimation of Glucose by ortho toluidine method - 4. Estimation of fructose by Roe Pappadapoulose Method - 5. Estimation of reducing sugars by DNS method - 6. Qualitative identification of carbohydrates in mixture containing mono, di and polysaccharides.- starch, dextrin, sucrose, maltose, lactose, glucose, fructose, xylose and glactose. - 7. Estimation of amino acid, methionine by nitroprusside method. - 8. Protein Estimation using Lowry's method. - 9. Protein estimation by Bradford's method. - 10. Estimation of ascorbic acid in plant matter - 11. Estimation of citric acid - 12. Estimation of cholesterol by Zak's method - 13. Bacterial synthesis of PHB and its estimation - 14. Demonstration of siderophore production by microbes - 15. Spectrophotometric assay of enzyme activity. - 16. Determination of Km and Vmax. - 17. Effect of pH and temperature on enzyme activity amylase SDS PAGE using protein Standards. - 18. Gel filtration chromatography - 19. Dialysis of proteins - 20. Paper chromatography - 21. TLC - 22. Column separation of plant pigments - 23. Fractionation of egg protein and its identification #### MBG1L02. Practical II # (Biophysics and Instrumentation, Environmental and sanitation microbiology & Agricultural Microbiology and plant pathology) #### **Course objectives:** - Will Master in aseptic techniques and develop skills in enumerating and identifying the potential pathogens in the environment (Air, water, and soil) - Will develop the skill and knowledge to design a fermentation process and translate the discoveries of life sciences to an economically valuable product. - CO1 Isolate bacteria, fungi, actinomycetes and phages from various sources of concern - CO2 Demonstrate various growth patterns, culturing methods and different quantification techniques of microorganisms from air, soil and termite gut - CO3 Demonstrate the Anaerobic cultivation of bacteria - **CO4** Evaluate the efficacy of autoclave and bacteria proof filters - CO5 Demonstration of special microorganisms with different unique applications in agriculture and environmental research. - CO6 Assess the quality of water by MPN, DO, BOD and COD. - CO7 Compare efficacy of different bio control agents. - CO8 Assessment of the synthesis of extracellular enzymes by microbes - CO9 Illustrate the role of microorganisms in bioremediation. - 1. Study of air microflora by plate exposure and liquid entrapment - 2. Cultivation of fungi Slide culture technique. - 3. Water potability testing by Most Probable Number technique - 4. Determination of DO, BOD and COD - 5. Efficiency testing of bacteria proof filters and autoclave. - 6. Anaerobic culturing by liquid paraffin overlay and pyrogallol. - 7. Anaerobic enrichment of cellulose digesters - 8. Winogradsky column. - 9. Demonstration of Microbial Bioluminescence. - 10. Phage cultivation - 11. Microbial flora from different soil types and habitats bacterial and fungal - 12. Isolation of actinomycetes from soil. - 13. Detection of R:S ratio by estimating rhizosphere population. - 14. Assay of extracellular enzymes- cellulase, protease, lipase and phosphatase - 15. Isolation of nitrogen fixing bacteria, Rhizobium. - 16. Isolation of non symbiotic nitrogen fixing bacteria. - 17. Isolation of Azospirillum - 18. Isolation of phosphate solubilizing organisms. - 19. Cultivation of Azolla - 20. Isolation of biocontrol agents, Pseudomonas fluorescence and Trichoderma - 21. Microflora of termite gut- isolation of cellulose degrading bacteria and direct microscopic examination of protozoa - 22. Demonstration of microbial antagonism - 23. Bioassay of Bti and Bt - 24. Comparison of microflora in Bt-treated and chemical pesticide-treated soils - 25. Microbial degradation of phenols - 26. Phosphate, nitrogen and metal removal by microbes #### **SEMESTER II** #### **MBG2C05.** Principles of Genetics Course objectives: The learner will get a general understanding on classical genetics, bacterial genetics with particular focus on linkage and crossing over, pedigree and chromosomal aberrations. #### **Course Outcome:** - CO1 Recall the basic concepts of Classical genetics, History of Mandel experiments on pea plants and the laws and importance of Mendelian genetics. - CO2 Explain the mechanism of sex linkage, crossing over and genetic mapping - CO3 Summarize the importance and significance of Chromosomal aberrations. - CO4 Analyse the importance of Pedigree analysis and its usage in genetic disease analysis. - CO5 Discuss the basic concepts of bacterial genetics and mode of gene transfer mechanism in bacteria. - CO6 Justify and correlate the importance of the molecular events in gene expression and in gene regulation. Unit 1. Introduction to Classical genetics: Pre- Mendelian genetic concepts: Preformation, Epigenesis, Inheritance of acquired characters and Mutation theory. Heredity and Environment: Concepts of Phenotype, Genotype, Heredity, variation, Pure lines and Inbred lines. Biography of Mendel and his experiments on pea plants. Law of Segregation: Monohybrid cross, Back cross and Test cross, Problems related. Law of Independent Assortment: Dihybrid cross in pea plant, Back cross and Test cross, Problems related. Multiple Alleles: Definition, ABO blood groups and Rh factor in Human, Genetic Problems related. Gene Interactions. Deviations from Mendelism: Incomplete inheritance and Codominance. Inter allelic: Complementary gene interaction (9:7) Ex: Lathyrus odoratus Supplementary gene interaction (9:3:4) Ex: Grain color in Maize. Epistasis - Dominant Ex.: Fruit color in Cucurbita pepo, Recessive - Ex.: Coat color in Mice. Non- Epistasis - Ex.: Comb pattern in Poultry. - Unit 2. Sex linkage in Genetics: Meiotic behavior of chromosome and non disjunction. Theory of non-disjunction. Sex linked inheritance in man (Colourblindness, Haemophilia). Attached X-chromosome. Chromosome theory of Sex determination: XX- XY, XX-XO, ZZ- ZW. Environment and sex determination. Hormonal control of Sex determination. Gynandromorphs Dosage compensation in Drosophila and Man (Lyon's hypothesis). Inheritance of Mitochondrial DNA and Chloroplast DNA - Unit 3. Linkage and Crossing over: Linkage: Definition of Linkage, Coupling and Repulsion hypothesis. Types of linkage-complete linkage and incomplete linkage. Factors affecting linkage- distance between genes, age, temperature, radiation, sex, chemicals and nutrition. Crossing over: Crossing over- definition and types of crossing over: Germinal and Somatic crossing over. Cytological basis of crossing over: Stern's experiments in Drosophila. Mechanism of crossing over: Chiasma type theory, Breakage first theory, Contact first theory, Strain or torsion theory. Molecular mechanism of crossing over - Holiday model, Crossing over in Drosophila. Interference and coincidence, Steps in Construction of genetic map. - Unit 4. Chromasomal aberrations: Numerical: Euploidy (Monoploidy, Haploidy and Polyploidy Polyploidy Autopolyploidy and Allopolyploidy. Aneuploidy-Monosomy, Nullisomy and Trisomy. Structural - Deletions (Terminal, Interstitial), Duplication (Tandem, Reverse tandem and Displaced), Translocation (Simple, Isochrome, Reciprocal, Displaced) and Inversions (Pericentric and Paracentric). Significance of chromosomal aberrations. - Unit 5. Pedigree: Symbols used in pedigree studies, Pedigree analysis and construction, Pedigree analysis for the inheritance pattern of genetic diseases, Genetic Counselling. - Unit 6. Bacterial genetics: Bacterial Genetics: Transformation, Transduction-Generalized and specialized; Conjugation: F factor mediated, Hfr and Sexduction. Transposable elements: Bacteria, Yeast, Maize and Drosophila. #### MBG2C06. Food and Dairy Microbiology Course objectives: Students get sufficient knowledge in understanding the relationship between food and microbes. Develop the skills in techniques used in food processing, preservation and understanding the different control measures in food spoilage. - Classify the type of Microorganisms present in food able to cause - CO1 contamination and what are the factors influence growths of microbes in foods. - CO2 Explain standards for assessing the quality of milk. - CO3 Summarize spoilage of food, factors causing food spoilage and food preservation methods - CO4 Elaborate different food borne infections - CO5 Explain about food hygiene and regulatory practices - Discuss the importance of microorganisms in food and factors affecting their growth in foods. - Unit 1. Food as a substrate for microorganisms. Common microorganisms in food. Factors influencing microbial growth in food intrinsic, extrinsic and implicit. - Unit 2. Fermented food products: Food fermentations- Principles and classification. Starter, non-starter cultures in food fermentation. Fermentation of wine and beer. Fermented vegetables- sauerkraut, pickle, olives. Fermented cereals- bread, idli, dosa, koji. Fermented meat— sausage. Fermented fish products. Other fermented foods- Vinegar, soy sauce. Whey fermentation. SCP fermentation - Unit 3. Dairy microbiology: Physical and chemical properties of milk. Microbiological analysis of milk- DMC, SPC, MBRT, Resazurin test, Alkaline phosphatase test. Fermented Dairy products- Yoghurt, kefir, Acidophilus milk, buttermilk and cheese. Probiotics (*Lactobacillus, Bifidobacterium*) and prebiotics. - Unit 4. Food spoilage and preservation: General principles underlying food spoilage. Spoilage of meat, fish, egg, milk, vegetables, fruits and stored grains. Spoilage at low temperature. Spoilage of canned food. Principles of food preservation. Food
preservation by physical methods- high and low temperature, drying, freezing, irradiation and high pressure. Food preservation by chemical methods-characteristics of food preservatives. Class I and class II preservatives. Modern food - preservation techniques- high electronic field pulses, oscillating magnetic fields pulses, intense light pulses and ultra high hydrostatic pressure. - Unit 5. Food borne infections Bacterial, Fungal and viral infections. Bacterial-Salmonella, Staphylococcus, Listeria, Brucella, Bacillus, Clostridium, Escherichia. Fungal - Aflatoxins and ergotism. Viral- Hepatitis, Bovine Spongiform encephalopathy. - Unit 6. hygiene, regulation and standards: Food sanitation. Food control agencies and their regulations. Codes for GMP. HACCP and FSO Systems for food safety. #### MBG2C07. Industrial Microbiology Course objectives: Learner will be familiarised with the equipment's and various fermentation systems in the industry for product development. Will be able to understand the isolation, screening, strain development, fermentation and formulation of various industrially important products. Also acquire an understanding of process control, upstream and downstream processes. - Describe the methods for screening, isolation, strain improvement, CO₁ upstream processing and down stream processing in industrial process. Apply different isolation and development methods for industrially CO₂ important microorganisms. CO₃ Explain the mass transfer mechanism in fermentation. CO4 Compare different types of fermentations CO₅ Explain the effects of different components in fermentation media. Discuss various techniques used for the recovery of fermentation **CO6** products - Unit 1. Isolation and screening of industrially important microbes. Strain selection and improvement. Bioprocesses- concepts and design. Continuous and batch fermentations. Types of bioreactors. Bioreactor design and control. - Unit 2. Kinetics of fermentation process. Transport phenomena in bioprocess such as mass transport coefficients for gases and liquids and oxygen transfer coefficients, heat transfer. - Unit 3. Principles of bioprocess media formulations. Sterilization systems. Concepts of inoculum development. Monitoring and control of variables such as temperature, agitation, pressure and pH. - Unit 4. Downstream processing filtration, centrifugation, precipitation, salting out, crystallization and biphasic separation. Bioassays, Standardization, formulations and packaging. Shelf life consideration. - Unit 5. Manufacture of the following: penicillin, streptomycin, tetracycline, Vit. B -12. Citric acid by surface and submerged process. Ethanol fermentation from molasses. Industrial fermentation of wine and beer. Acetone butanol fermentation. Bakers yeast. Lactic acid from whey, amylases by fungi, mono sodium glutamate. Importance of fermentations in ayurvedic medicines. Importance and production of Single cell protein (SCP). - Unit 6. Industrial microbiological products as primary and secondary metabolites, regulation of overproduction of primary and secondary metabolites, bypassing of regulatory mechanisms for the over-production of primary and secondary metabolites. #### MBG2C08. Immunology #### **Course objectives:** - Promotes critical thinking on the cellular ontogeny and organ involvement in immunity and the mechanisms involved in immune responses. - Will develop good understanding on how the immune system functions and also develop the skill to diagnose various diseases by immunological assays. - Acquaint knowledge immune mediated conditions like hypersensitivity, autoimmunity and immune deficiency diseases. - CO1 Describe the cells, organs, molecules, mediators, receptors associated with immune responses. - CO2 Illustrate the development of different immune responses in a host. - Classify the immunoglobulins with a detailed understanding of their diversity generation - CO4 Explain the mechanisms of Hybridoma technology, antigen antibody reactions and Complement system - Categorize different immune associated disease conditions like CO5 hypersensitivity, autoimmunity, graft rejection and tumor development based on mechanism. - Unit 1. Defense System: Immunity- Types and Detailed Mechanisms of Innate and Acquired Immunity. Vaccines. Antigens. Immunoglobulins-Structure, Classification and Biological Functions. Genetic Basis of Immunological Diversity. Monoclonal Antibodies and Hybridoma Technology. - Unit 2. Lymphoid System: Lymphoid Cells. Hematopoiesis. Structure, Function, Maturation, Development and Classification of T and B Lymphocytes. Lymphocyte Traffic. Toll Like Receptors (TLR), Lymphoid Organs – Primary and Secondary. Cytokines- Types and Biological functions. - Unit 3. Immune Response: Humoral and Cell Mediated Immune Response. Primary and Secondary Immune Response. Processing and Presentation of Intracellular and Extracellular antigens. Immunological Tolerance and Theories of Immune Response. Major Histocompatibility Complex - Unit 4. Antigen-Antibody Reactions and their applications in immunodiagnosis. Complement System- Activation and Biological Functions. Structure of Membrane Attack Complex, Complement Fixation Test. Hypersensitivity- Types and Mechanisms. - Unit 5. Autoimmune Diseases-Causes, pathogenesis, diagnosis and treatment of common autoimmune diseases. Immunodeficiency Diseases, Transplantation Immunology-Types of Grafts, Grafts Acceptance & Mechanism of Graft Rejections. Host Versus Graft (HVG) and Graft Versus Host (GVH) Reactions, Prevention of Graft Rejections. Immunohematology- ABO and Rh Blood Group Systems, Blood Transfusion, Hemolytic Diseases, Rh Incompatibility. Tumor Immunology #### MB2L03. Practical III #### (Food and Dairy microbiology & Industrial microbiology) #### **Course objectives:** - To acquire knowledge on various growth patterns, culturing methods and different quantification techniques of microorganisms. - To study the microflora of air, water and soil - Isolation, screening and strain improvement of industrially important organisms for product development. - To demonstrate different fermentations and their product recovery processes. - CO1 Enumerate the milk microflora and Apply the methods used in Testing the quality of milk. - CO2 Demonstrate preservation of foods - CO3 Enumerate microflora of food spoilage - CO4 Isolation of enzyme producing microorganisms - CO5 Demonstrate the Growth curve of bacteria - CO6 Demonstrate the detection of industrially important microorganisms and its metabolite production - CO7 Demonstrate the production of Mushroom production. - 1. Milk microbiology direct microscopic count and standard plate count, presumptive test for coliforms - 2. Testing the quality of milk Methylene blue reductase test, Resazurin test and alkaline phosphatase test. - 3. Isolation of microbes from yoghurt, idli batter bacterial and fungal - 4. Brine storage of foods. - 5. Whey fermentation to alcohol - 6. Microbial spoilage of refrigerated food - 7. Microbial analysis of food products detection of indicator organisms, faecal streptococci and *E.coli* by Most Probable Number method and direct plating. - 8. Microbial analysis of food products detection of pathogenic microorganisms, *S. aureus*, *Salmonella* and *Vibrio*. - 9. Microbial analysis of food products detection of anaerobic spore forming *Clostridia* - 10. Microbial analysis of food products detection of yeast and mould - 11. Growth curve of bacteria using breeds count, CFU, turbidimetry and PCV - 12. Demonstration of mutation in bacteria - 13. Isolation of amylase producers. - 14. Isolation of cellulase producers - 15. Scale up of inoculum. - 16. Cell disruption techniques - 17. Downstream processing Salting out - 18. Immobilization of cell or enzyme - 19. Bioassay of antibiotic. - 20. Citric acid production by submerged fermentation. - 21. Solid state fermentation - 22. Production of wine. - 23. Cultivation of mushroom. - 24. Demonstration of IAA production #### **SEMESTER III** #### **MBG3C09.** Medical Microbiology #### **Course objectives:** - Get acquainted with the molecular basis of pathogenesis and virulence of different pathogens and would also be sensitized to the social impact of the most dreadful diseases. - Will acquire knowledge on various antimicrobial drugs, drug resistance, biochemical characterization of medically important microorganisms etc. - CO1 Describe the morphology, pathogenicity, epidemiology, laboratory diagnosis and treatment of important human bacterial pathogens. - CO2 Explain the pathogenesis, laboratory diagnosis and prophylaxis of important viral pathogens. - CO3 Illustrate the characteristics of fungi with focus to superficial, sub cutaneous, deep and opportunistic infections. - CO4 Describe the general features and classification of protozoa. - CO5 Demonstrate the morphology, life cycle, pathogenesis and epidemiology of important protozoan diseases. - **CO6** Describe the mechanism of action and activity spectrum of antibiotics. - CO7 Discuss the antifungal and antiviral drugs and determination of MIC. - Unit 1. Bacteriology: Morphological characteristics, pathogenicity, epidemiology, laboratory diagnosis and treatment of following pathogenic bacteria. Morphological characteristics, pathogenicity, epidemiology, laboratory diagnosis and treatment of following pathogenic bacteria. Aerobic cocci- Staphylococcus, Streptococcus, Pneumococcus and Nesseria. Aerobic Gram positive bacilli- Cornybacterium diphtheriae and Bacillus anthracis. Anaerobic Gram positive bacilli Clostridium botulinum. Gram negative bacilli Enterobacteriaceae- Escherichia coli, Proteus, Klebsiella, Shigella and Salmonella. Vibrio cholerae. Spirochetes Treponema and Leptospira. Mycoplasma. Mycobacteria M. - tuberculosis and M. leprae Miscellaneous bacteria- Listeria, Campylobacter and Helicobacter - Unit 2. Virology: Quantification and classification of viruses. Pathogenesis, laboratory diagnosis and
prophylaxis of following viral infections –Polio, Influenza, Mumps, Measles, Rabies, Japanese encephalitis, Viral haemorrhagic fever, Rubella, Hepatitis, HIV, Slow viru diseases, Emerging viral diseases- bird flu, swine flu and Nippah. - Unit 3. Mycology and parasitology: Fungi General characteristics, classification based on morphology and reproduction. Fungal diseases Superficial (Piedra and Pityriasis), Cutaneous (Dermatophytoses), Subcutaneous (Mycetoma), Deep (Histoplasmosis) and Opportunistic fungal infection (Candidiasis). Protozoa general features and classification. Morphology, lifecycle, pathogenesis and epidemiology of protozoan parasites Entamoeba hystolytica, Giardia lamblia, Trypanosoma, Leishmania and Plasmodium. Helminths Schistosoma haematobium, Ancylostoma duodenale and Wuchereria brancofti. - Unit 4. Antibiotics- Classification of antibiotics based on the mode of action with one representative drug in each class- sulfonamides, quinolones, penicillins, cephalosporins, tetracyclines, aminoglycosides, macrolides. Brief outline of antifungal and antiviral drugs. Determination of MIC. #### **MBG3C10- Molecular Biology** Course Objectives: The course aims to develop the concept of gene expression and the molecular events associated. The learner will be able to explain the mechanisms of gene expression regulation and their impact on the cellular development. An understanding of oncogenes and tumour suppressor genes also will be acquired by the learner. #### **Course Outcome:** CO₅ - Explain the mechanisms behind the information flow from DNA to proteins and the multiple levels at which gene expression can be regulated. CO2 Compare gene expression and regulation in prokaryotes and eukaryotes Discus the molecular mechanisms underlying mutations, DNA damage and repair Acquaint knowledge of DNA replication and other mechanisms of gene transfer mechanisms - Unit 1. DNA structure: Chemistry of DNA, Forces stabilizing DNA structure, Forms of DNA, Watson –Crick and Hoogsteen base pairing, Physical properties of ds DNA. Mechanisms of supercoiling in cells, Mechanism of action of Topoisomerase I and II, effect of supercoiling on structure of DNA and the role of supercoiling in gene expression. Organization of DNA into chromosomes: Eukaryotic chromosome organization and its molecular mechanism. Discuss the concept of Oncogenes and tumour suppressor genes. - Unit 2. DNA replication- Prokaryotic and eukaryotic DNA replication, mechanism of replication. Enzymes and necessary proteins in DNA replication. Telomeres, telomerase and end replication. Role of telomerase in aging and cancer. DNA Repair- Mismatch, Base- excision, Nucleotide-excision and direct repair DNA recombination- Homologous, site- specific and DNA transposition - Unit 3. Transcription-Prokaryotic and eukaryotic Transcription-RNA polymerases general and specific transcription factors- regulatory elementsmechanism of transcription regulation-Transcription termination. **Post** transcriptional modification-5' cap formation-3' end processing and polyadenylation-splicing editing-nuclear export of mRNA-mRNA stability. - Unit 4. Translation: Structure and role of t-RNA in protein synthesis, ribosome structure, basic features of genetic code and its deciphering, wobble hypothesis, translation (initiation, elongation and termination in detail in prokaryotes as well as eukaryotes) Post translation modification by cleavage, self-assembly, assisted self-assembly chaperones, acylation, phosphorylation, acetylation and glycosylation, Histone acetylation and deacetylases, chromosome remodelling complex. Intein splicing. Protein targeting, co-translational import, post translational import, Lysosome targeting. - Unit 5. Molecular mechanism of gene regulation in prokaryotes-Transcriptional regulation in prokaryotes; Inducible & repressible system, positive and negative regulation; Operon concept, structure of operon, Lac, Trp, Ara operon, Catabolic repression, Attenuation. Role of Hormones in gene regulation. Antisense RNA, SiRNA, MicroRNA, Riboswitches & their applications. - Unit 6. Oncogenes & tumour suppressor genes, viral & cellular oncogenes, tumour suppressor genes from humans, pRb &p53 tumour suppressor protein. #### MBG3E01. Diagnostic microbiology Course Objectives: Will acquire the capability to use logical and systematic thinking to solve problems with diagnostic techniques and procedures and apply high level analytical skills to the chosen area of clinical laboratory specialization. - CO1 Describe a wide range of diagnostic technologies and methodologies relevant to the fields of clinical biochemistry, haematology, histopathology, cytopathology, molecular biology and microbiology. - CO2 Differentiate between various Probe-Based Microbial Detection and Identification. - **CO3** Compare various molecular diagnostic tools. - **CO4** Explain the application of molecular tools in systematics. - Unit 1. Automated Blood Cultures. Rapid Antigen Tests.- Advanced Antibody Detection.- Phenotypic Testing of Bacterial Antimicrobial Susceptibility.- Biochemical Profile-Based Microbial Identification Systems. - Unit 2. Probe-Based Microbial Detection and Identification.- Pulsed Field Gel Electrophoresis.- In Vitro Nucleic Acid Amplification: An Introduction.- PCR and It's Variations.- Non-Polymerase Chain Reaction Mediated Target Amplification Techniques.- Recent Advances in Probe Amplification Technologies.- Signal Amplification Techniques: bDNA, hybrid capture. - Unit 3. Detection and Characterization of Molecular Amplification Products: Agarose Gel Electrophoresis, Southern Blot Hybridization, Restriction Enzyme Digest Analysis and Enzyme-Linked Immunoassay.- Direct Nucleotide Sequencing for Amplification Product Identification.- Microarray-Based Microbial Identification and Characterization.- Diagnostic Microbiology Using Real-time PCR Based on FRET Technology. - Unit 4. Bacterial Identification Based on 16S Ribosomal RNA Gene Sequence Analysis. Advance in the Diagnosis of Mycobacterium tuberculosis and Detection of Drug Resistance. Molecular Strain Typing Using Repetitive Sequence –Based PCR. #### MBG3E02. Cell Biology Course Objectives: The course is intended to provide basic level knowledge in cell biology. The learner will be able to understand the cellular organelle in detail along with an introduction to the signal transduction mechanism expanding through the apoptosis and cancer. The learner will have knowledge of the structure, function and interrelationships of various cell organelle in Eukaryotes. - CO1 Explain the structure and functions of cell components in eukaryotic cells - CO2 To distinguish the mechanism of protein sorting and transportation to various targets. - CO3 Describe the mechanisms of cell signaling, cell death and cancer development. - CO4 Correlate the cell communication mechanism with the cell cycle and its regulation. - CO5 Conceptualize the theories and molecular mechanism of cancer development - Unit 1. Introduction, Discovery of cell and Cell Theory. An overview of Cells Composition of Cells Molecules of cell, cell membranes and cell Proteins. The Nucleus Nuclear Envelope- structure of nuclear pore complex, nuclear lamina, Transport across Nuclear Envelope, Chromatin: molecular organization, Nucleolus. - Unit 2. Mitochondria, Chloroplasts and Peroxisomes Structural organization, Function, Marker enzymes, Mitochondrial biogenesis, Protein import in mitochondria, Semiautonomous nature of mitochondria and chloroplast, chloroplast DNA, Peroxisomes'assembly - Unit 3. Cytoskeleton and Cell Movement Structure and organization of actin filaments; actin, myosin and cell movement; intermediate filaments; microtubules. Protein Sorting and Transport The Endoplasmic reticulum, The Golgi Apparatus, Mechanism of Vesicular Transport, Lysosomes. - Unit 4. Signal transduction: electrical impulses and their transmission: Structure and electrical properties of neurons, resting potential, action potential, propagation of action potential, voltage gated and ligand gated channels, synaptic transmission ,chemical signals and receptors, second messengers: cAMP, Ca ions, Ras pathway, glycogen breakdown by epinephrine. Nucleus, structure of chromosomes, chromosome banding, mitosis and meiosis, chromosomal organization Cell cycle: G1, S,G2, M phases, model organisms, MPF, cyclins, checkpoints, Role of Rb & p53. Cell cycle inhibitors Unit 5. Cell death and cancer: Apoptosis and necrosis, apoptotic pathways, theories on apoptosis, types of tumor, induction of cancer, properties of cancer cells, oncogenes and c-onco genes, tumor suppressors, Molecular pathways- PIP3 Akt, MAP kinase. #### MBG3E03. Microbial Taxonomy #### **Course Objectives:** - Recognize the extent of microbial diversity present in this world including prokaryotic and eukaryotic microbes and the importance of microbial diversity in different habitats including extreme environments. - Understand conventional and molecular methods used for studying microbial diversity and problems and limitations in microbial diversity studies - Describe the microbial classification schemes and methods used for taxonomy, distinguish and differentiate the use of various taxonomic tools apt for classification and identification of microorganisms. - CO1 Compare the classification systems with contributions of pioneers in taxonomy - CO2 Distinguish different criteria used in characterization and classification - CO3 Analyse the Molecular techniques used in classification - CO4 Discuss the Bergey's Mannual of Systematic Bacteriology with emphasis to different groups. - Demonstrate the knowledge of taxonomy of microorganisms and their importance in clinical microbiology, public health and to prevent growth and spread of microbes in the environment. - Unit 1. Contributions of Pioneers in the field-Von Nageli, Chatton, Whittaker and Woese. Phylogenetic relationships. Brief outline of 5 kingdom classification. Three
domain system- characteristics of the Domains: Bacteria, Archaea, Eukarya. Approaches in classification- Natural, Phenetic and Phylogenetic classification. Molecular or genetic approaches in classification. Numerical taxonomy. - Unit 2. Criteria used in classification-Morphological, cultural, biochemical, nutritional, ecological, serological characteristics. Principles and procedures of important tests (based on the characteristics) used in classification. Agglutination, Precipitation, ELISA, Western blotting, Phage typing, Fatty acid profile, Flow cytometry. - Unit 3. Molecular techniques: DNA base composition, DNA finger printing, Aminoacid sequencing, PCR, Nucleic acid hybridisation, Southern blotting, DNA chips, Nucleic acid sequencing, Ribotyping and rRNA sequencing. Flourescent In Situ Hybridisation (FISH). - Unit 4. Bergey's Mannual of Systematic Bacteriology: Brief outline. Distinguishing features of Prokaryotes-Archae and Bacteria. Characteristic features of the important groups under- Archae: Crenarchaeota (Hyperthermophile) and Euarchaeota (Methanobacteriales and Halobacteriales). Bacteria: Proteobacteria (Alpha, Beta, Gamma, Delta and Epsilon), - Unit 5. Nonproteobacteria (Deinococcus, Photosynthetic bacteria, Planctomycetes, Chlamydiae, Spirochetes and bacteroidetes), Gram positives -Low G+C gram positive bacteria (Firmicutes- Mycoplasma, Closrtidia and Bacilli) and High G+C gram positive bacteria (Actinomycetes-Corynebacterium, Mycobacterium, Streotomyces). #### **MBG3L04 Practical IV** #### (Immunology and Medical Microbiology) #### **Course Objectives:** The diagnostic methods in microbiology, haematology and immunology are practiced by the learner in this course. The course will also provide a hands-on expertise in identification of pathogenic bacteria from a clinical sample, sensitivity profiling of the isolate - CO1 Perform the acid fast staining procedure - CO2 Demonstrate skills in isolation and identification of various pathogenic microorganisms. - CO3 Discuss the viral inoculation routes in embryonated eggs. - CO4 Perform immunological tests for diagnosis of antigen/antibody - CO5 Determine the MIC of an antimicrobial compound - 1. Acid fast staining - 2. Preparation and microscopic examination of pathogenic microbes using permanent slides - 3. Preparation of antibiotic discs - 4. Determination of MIC - 5. Demonstration of antifungal activity - 6. Antibiograms of common bacterial pathogens by Kirby Bauer method - 7. Detection of betalactamase production - 8. Study of normal microbial flora of human beings - 9. Identification of common bacterial pathogens from clinical specimen using morphological, cultural and biochemical characteristics. - 10. Identification of common fungal pathogens from clinical specimen using morphological, cultural and biochemical characteristics. - 11. Routes of viral inoculation in embryonated eggs - 12. Blood group determination - 13. Ouchterlony Double diffusion Test - 14. Widal test: Slide and Tube tests - 15. VDRL test - 16. ELISA - 17. Immunoelectrophoresis - 18. Blood cell count TC and DC - 19. ESR determination - 20. Complement fixation test #### MBG3L05. Practical V #### (Principles of Genetics & Molecular Biology) #### **Course Objectives:** This learner after the course will be able to isolate, purify and estimate DNA/Plasmids and RNA. The transformation and conjugation techniques will be demonstrated for the thorough understanding of the concept of gene transfer in bacteria. The course also aims at visualising the isolated nucleic acids by electrophoretic techniques. The demonstration on cloning and restriction mechanisms will enhance the practical capacity of the learner. - CO1 Demonstrate the stages of mitosis and meiosis - CO2 Isolate, purify and estimate DNA, RNA and plasmid from bacteria - CO3 Demonstrate the visualization of the isolated nucleic acid by electrophoresis - CO4 Demonstrate the concept of hyperchromism - Evaluate the gene transfer process in bacteria by performing conjugation CO5 - and transformation - CO6 Assess the gene transfer by induction of beta gal gene in E coli - Demonstrate cloning and restriction digestion - 1. Study of mitotic stages using onion root tip - 2. Meiosis - 3. Agarose Gel Electrophoresis - 4. DNA isolation, purification and visualization - 5. Estimation of DNA - 6. RNA isolation, purification and visualization - 7. Estimation of RNA - 8. Hyperchromic shift on DNA melting - 9. Bacterial conjugation - 10. Bacterial transformation - 11. Isolation of plasmids - 12. Induction of Beta galactosidase gene in E. coli - 13. Cloning in E.coli - 14. Restriction Enzyme digestion of DNA #### **SEMESTER IV** #### **MBG4C11. Biostatistics and Bioinformatics** #### **Course Objectives:** - To equip the students with the tools to summarize the experimental data in diagrammatic and graphical way, to obtain descriptive statistics and make possible appropriate interpretations. - To understand the properties of the most important bioinformatics databases, perform text- and sequence-based searches, analyze the results in light of molecular biology. - Attain knowledge and awareness on the basic principles and concepts of Biology, Computer Science and Mathematics. - CO₁ Discuss the principles and practices of statistical methods in biological research. - CO₂ Explain various biological data bases for sequence retrieval, analysis, sequence alignments, phylogeny and other applications. - CO₃ Discuss the method of molecular docking and their application - Discuss the concept behind drug designing with the application of CO4 bioinformatics tools. - Unit 1. Biostatistics Principles and practice of statistical methods in Biological Research; Basic statistics; Averages; statistics of Dispersion; Coefficient of variations; Standard error; Probability; Distributions; Tests of statistical significance; Students T-test; Basics of correlation and regression. Analysis of variance. - Unit 2. Introduction to Bioinformatics and Biological Databases: Biological databases - nucleic acid, genome, protein sequence -Uniprot-KB: SWISS-PROT, TrEMBL,gene expression databases. Mode of data storage - File formats -FASTA, Genbank and Uniprot. Various file formats for biomolecular sequences: GenBank, FASTA. Data submission & retrieval from NCBI, EMBL, DDBJ, Uniprot, PDB. - Unit 3. Sequence Alignments, Phylogeny and Phylogenetic trees: Local and Global Sequence alignment, pairwise and multiple sequence alignment. Scoring an alignment, scoring matrices, PAM & BLOSUM series of matrices. Types of phylogenetic trees, Different approaches of phylogenetic tree construction-UPGMA, Neighbour joining, Maximum Parsimony, Maximum likelihood. - Unit 4. Molecular docking-types of docking-types of interaction-search algorithm, scoring function-key stages of docking-autodock -application-Drug designing. Structure prediction and protein modelling. #### MBG4E04. Microbial Biotechnology Course Objectives: Attain knowledge about the underlying principles of microbial fertilizers and their industrial applications. Understand the importance and environmental impact of genetic engineering. Understand the applications of Petroleum microbiology and microbial Insecticides. - CO1 Identify the issues related to plant nutrition, quality improvement, environment adaptation, transgenic crops and their use in agriculture. - CO2 Discuss the environmental impact of genetic engineering related to GM food crops and other agro, diary based products. - CO3 Explain the importance of microbes in oil recovery and degradation, leaching, bio-mining and also production of biopolymers, bio-surfactants, antibiotics enzymes etc. - CO4 Describe about genetic engineering for recombinant protein expression and production from various cell systems which has advanced knowledge about factorial experimental set up. - Unit 1. Production of microbial biofertilizers cyanobacteria, *Rhizobium, Azotobacter, Azospirillum, Phosphobacteria* and VAM. Extremophiles and their possible uses Thermophilic organisms. Yeasts and its uses Brewer's and Baker's yeast Food and fodder yeasts yeast products and their uses. Microbes as a health food Spirulina and its production methods. - Unit 2. Petroleum microbiology Sedimental microbes in petroleum formation Coal bioprocess to eliminate sulphur. Microbial enhanced oil recovery, oil spills degradation bymicroorganisms. Microbial production of fuels- H2 and ethanol. Microbial leaching of ores oil extraction metal leaching and biomining. Microbes and bioremediation role of microbes in herbicides, pesticides and other xenobiotics degradation. Degradation of toxic chemicals by *Pseudomonas*. Biotransformation useful products obtained in biotransformation. Microbial production of products like Biopolymers and biosurfactants. - Unit 3. Immobilization of cells and enzymes. Advantages and disadvantages of immobilized systems. Enzyme based electrodes. ATPase based cell quantitation and Lumac system. Hybridoma technology for monoclonal antibodies, recombinant vaccines, Animal cell culture. Novel bioreactor designs for animal cell culture hollow fiber, microcarrier and spin bioreactors. Probiotics use of *Lactobacilli* and *Bifidobacterium* therapeutic and nutritional value. - Unit 4. Microbial Insecticides, Commercial Products by Recombinant Microbes, Plant and animal Transgenesis, Cloning, Gene Therapy. Vaccine farming. Environmental impact of genetic engineering problems of GM foods and crops, Bti. Toxin resistance of insects cotton bollworm, tobacco budworm, use of multiple alleles of Bti toxin genes. Environmental release and monitoring of genetically modified/engineered organisms. Milk flavor manipulation through rumen microflora, mitigating greenhouse gas emission from dairying using biotechnology. #### MBG4E05. Genetic engineering Course Objectives: Will be capable of understanding and relating the conventional and molecular methods for gene manipulation in microbial and other systems,
their problems and limitations. - CO1 Discuss the fundamental molecular tools and their applications in DNA modification, manipulation and cloning. - CO2 Compare genomic and cDNA Library - CO3 Describe advanced molecular techniques in genetic engineering-PCR Methods, sequencing methods, RFLP, RAPD etc. - CO4 Interpret the importance of molecular marker genes in cloning - CO5 Explain the techniques for DNA introduction to the vectors and host cells. - Unit 1. Restriction digestion of DNA, separation by isopycnic & agarose gel methods. Cloning vectors-plasmids, BACs, PACs & YACs, cutting &joining DNA molecules, linkers, adaptors & homopolymer tailing, DNA libraries-construction of DNA libraries, genomic & cDNA libraries, - Unit 2. PCR-different types like RT-PCR, long PCR, inverse PCR, quantitative PCR, differential display PCR, nested PCR, RACE etc., probes- radiolabel led DNA/RNA probes, synthetic oligonucleotide probes, cloning strategies-cloning in E.coli, yeast & gram +ve bacteria. - Unit 3. Expression strategies for heterologous genes, vector engineering & codon optimization, screening strategies, screening by hybridization, colony hybridization, plaque lift assay, Northern, southern & western blotting, FISH, reporter assays. (25 Marks) - Unit 4. DNA sequencing, nucleic acid microarrays, site directed mutagenesis & protein engineering, DNA introduction methods like calcium chloride facilitated uptake, microinjection, electroporation, particle bombardment, use of Ti plasmid in generating transgenic plants. Molecular markers in genome analysis: RFLP, RAPD, AFLP analysis. RNA interference. (15 Marks) #### MBG4E06. Biosafety, Bioethics & IPR Course Objectives: Acquire basic understanding on the concepts of ethics and safety that are essential for different disciplines of science and procedures involved and protection of intellectual property and related rights. This will also enable us to understand balanced integration of scientific and social knowledge in sustainable development. - CO1 Discuss the significance of biosafety and bioethics related regulations. - CO2 Appreciate the importance of Intellectual property rights and explain various types of IPR. - CO3 Recognize importance of biosafety practices and guidelines in research - CO4 Comprehend benefits of GM technology and related issues. - CO5 Recognize importance of protection of new knowledge and innovations and its role in business - Unit 1. Impacts of biotechnology legal, socioeconomic, public elucidation of process of biotechnology in generating new forms of life. Biosafety in general, Food and feed products containing GMOs, Risk assessment/analysis, Risk management, Ethical aspects of GMOs, policy on the storage of GMOs, Gene technology act, Precautionary principle, Potential environmental risks & benefits, Potential socio-economical risks & benefits. - Unit 2. Bioethics: The Nature of Bioethics, Genetic modification/research on plants and animals, therapeutic cloning, human cloning, stem cell research. Federal Laws and the roles of: The Food and Drug Administration, The Centers for Disease Control and Prevention, The United States Department of Agriculture, The Environmental Protection Agency, State and Local Agencies - Unit 3. Patenting research tools and the law: Patents as a Strategy for Protection of Intellectual Property, Benefits and Costs of Patents, Requirements for Patent Protection, patentable subjects and protection in biotechnology, international convention for the protection of new varieties Strasbourg convention, UPOV convention. Experimental Use Exemption. The patentability of microorganisms, legal protection for plants and other higher organisms, new plant varieties by rights, tissue culture protocols, transfer of technology. Patentability of vectors. Unit 4. Patents on Research Tools. Access to data and intellectual property: scientific exchange in genome research. Patented research tools - Recombinant DNA, PCR, Taq Polymerase, Protein and DNA Sequencing Instruments, Research Tools in Drug Discovery. ## MBG4L06. Practical VI (Biostatistics and Bioinformatics) Course Objectives: Develop problem-solving skills, including the ability to develop new algorithms and analysis methods. Implement solutions to basic bioinformatics problems and use various bioinformatics tools to relate structure, sequence and function. #### **Course Outcome:** Demonstrate proficiency in bioinformatics methods including accessing the major public sequence databases, use of the different computational tools to find sequences, analysis of protein and nucleic acid sequences by various software packages - CO2 Retrieve data from Biological Databases - CO3 Explain the features of National Centre for Biotechnology Information (NCBI) - CO4 Preform sequence comparison using various alignment tools - CO5 Create protein structures with modelling tools. - CO6 Prediction of Gene structure, gene function and ORF position. - Biological Databanks- Sequence Databases, Structure Databases, Specialized Databases - 2. Introduction to National Center for Biotechnology Information (NCBI) - 3. Data retrieval: Entrez, SRS and DBGet. - 4. Analysis of gene sequence from nucleotide database. - 5. Analysis of protein sequence from protein database. - 6. Introduction to PDB and analysis of PDB file. - 7. Molecular visualization - 8. Gene structure and function prediction (using GenScan, GeneMark) - 9. Sequence similarity searching using BLAST and interpretation of the results. - 10. Multiple sequence alignment using Clustal and interpretation of the results. - 11. Protein sequence analysis using ExPASy proteomics tools - 12. Phylogenetic analysis using web tools - 13. Phylogenetic analysis using PHYLIP - 14. Sequence analysis using EMBOSS - 15. Homology Modelling and structure refinement Swiss model - 16. Model validation using What Check and Pro Check - 17. Docking using HEX - 18. Biostatistics problems - 19. Statistical Analysis using EXCEL: graphical presentation - 20. Regression Analysis using spreadsheet application #### MBG4P. Dissertation Course Objectives: Develop critical thinking and use of primary research publications to understand the scientific processes which will lead them to draw hypothesis. Will be able to systematically apply the scientific method of investigation and hypothesis testing, analysis and interpretation. Proficiency in scientific writing will also be achieved. #### **Course outcome** - CO1 Perform data mining, literature search, systematic review, research gap finding and development of hypothesis. - CO2 Design and execute experiment/ sampling methods - CO3 Compilation and analysis of data and interpretation of results - CO4 Analyse the results and validate the hypothesis to reach proper conclusions. - CO5 Develop scientific writing skills - CO6 Demonstrate skills in various advanced laboratory techniques A dissertation should be submitted by each student as a part of the curriculum, based on a topic related to the subject area at the end of the forth semester. #### REFERENCES - 1. A hand book of water and waste water microbiology Mara & Nigel Horan - 2. A text book of Medical Mycology-J. Chander - 3. Advanced Techniques in Diagnostic Microbiology -Tang, Yi-Wei; Stratton, Charles W. (Eds.)2006. - 4. Agricultural Microbiology Rangaswami - 5. Agricultural Microbiology Subha rao - 6. Bailey and Scott's Diagnostic microbiology Baron et al - 7. Basic food microbiology Banwart GJ - 8. Biochemistry DM Vasudevan and S Sreekumari - 9. Biochemistry Strayer - 10. Biochemistry Voet and Voet - 11. Biochemistry West and Todd - 12. Bioethics: An Introduction for the Biosciences Ben Mepham, - 13. Bioinformatics sequence and genome analysis Mount - 14. Bioinformatics computing Bergeron - 15. Biological fundamentals Biotechnology Ed. H.J. Rehm and G. Reid - 16. Biopesticides, use and delivery Hall and Menn - 17. Biostatistical analysis Zar - 18. Biotechnology B.D. Singh - 19. Biotechnology of Integrated pest management Persley - 20. Cell & Molecular Biology-Gerald Karp. - 21. Comprehensive biotechnology Murray and Moo Yung - 22. Dairy Microbiology Robinson RK - 23. Diagnostic methods in Clinical Virology: N.R. Grist - 24. Environmental Biotechnology Principles and applications –Burce E et al., - 25. Environmental biotechnology and cleaner bioprocess - 26. Essential Clinical immunology Helen Chappell and Mansei Haemy - 27. Essentials of Diagnostic Virology: G. Storch - 28. Food microbiology Adams MR and Moss MO - 29. Food Microbiology Frazier WC and Westhoff - 30. Food Microbiology -Doyle et al. - 31. Fundamental immunology -Paul W. E et al - 32. Fundamental principles of bacteriology A.J. Salle - 33. Fundamentals of biotechnology Ed. Paul Prave et al., - 34. Fundamentals of Immunology Kuby - 35. Fundamentals of microbiology Frobischer - 36. Fundamentals of Molecular Virology By Nicholas H. Acheson - 37. Fundamentals of the Fungi- Moore - 38. Fungal infections: Diagnosis and Management-Richardson and Warnock. - 39. General Microbiology Stanier - 40. Genes VIII Benjamin Lewin - 41. Immunobiology Janeway Travers - 42. Immunology Coleman et al - 43. Immunology –Roitt - 44. Industrial microbiology Prescott and Dunns - 45. Introduction to Bioinformatics Arthur M Lesk - 46. Introduction to immunology John W Kimbal etal., - 47. Lehninger's Principles of Biochemistry Nelson and Cox - 48. Manuel of Industrial microbiology and biotechnology Demain& Davies - 49. Medical Microbiology Macie and Mc. Cartney - 50. Medical Microbiology: David Greenwood, Slack, Peutherer - 51. Medical Mycology- Rippon - 52. Medical Virology: Fenner and White - 53. Microbial Ecology Ronald M Atlas - 54. Microbial genetics Maloy, S.R., J.E., Cronana and D. Friedfelder. 1994. - 55. Microbiology Pelzar M.J, Chan et al., - 56. Microbiology Prescott - 57. Microbiological Applications Alfred E Brown - 58. Molecular Biology Friefielder - 59. Molecular biology of the cell Bruce Alberts et al., - 60. Molecular
Biology of the Gene Watson - 61. Molecular Biotechnology-Glick&Pasternac - 62. Molecular Cell Biology- Lodish - 63. Notes on Medical Virology By Morag.C. Timbury - 64. Plant breeding B.D. Singh - 65. Plants, genes and crop biotechnology Chrispels & Sadava - 66. Principles and Practice of Infectious diseases Madell, Bennett, Dolin Vol-1 & 2 - 67. Principles of Biochemistry White Handler and Smith - 68. Principles of Fermentation technology Stanburry PF, Whitekar - 69. Principles of Gene Manipulation Primrose - 70. Principles of Microbiology Ronald M Atlas - 71. Recombinant DNA technology -Watson - 72. Text book of Biotechnology Cruger and Cruger - 73. Text book of Medical Parasitology-CKJ Panicker. - 74. Text book of Microbiology Jayaram Paniker and Ananthanarayanan